Car Q3

26. (New) A method for the preparation of surface-active phosphates comprising esterification of the surfactant alcohols and alkoxylation products thereof of claim 12 with phosphoric acid or its derivatives to give acidic alkyl phosphates or alkyl ether phosphates.

REMARKS

Claims 1-13 and 19-26 are active in the present application. Claims 1-13 have been amended to remove multiple dependencies. Claims 14-18 have been cancelled and replaced by new Claims 22-26 that conform to U.S. Patent Practice. New Claims 19-21 are supported by original Claims 6 and 8. No new matter is added. An action on the merits and allowance of claims is solicited.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Norman F. Oblon Attorney of Record Registration No. 24,618

Daniel J. Pereira, Ph.D. Registration No. 45,518

Tel.: (703) 413-3000 Fax: (703) 413-2220 NFO:DJP:SUKOS\la

I:\atty\SUKOS\213301US-PR.WPD

Marked-Up Copy
Serial No:

Amendment Filed on:

IN THE CLAIMS

Claims 14-18 (Cancelled).

Please amend the claims as follows:

- --3. (Amended) A process as claimed in [at least one of claims I and 2] <u>claim 1</u>, wherein process step a), the dimerization, is carried out with heterogeneous catalysis.
- 4. (Amended) A process as claimed in [at least one of claims 1 to 3] <u>claim 1</u>, wherein a dimerization catalyst is used which comprises at least one element of subgroup VIII of the Periodic Table and the catalyst composition and the reaction conditions are chosen such that a dimer mixture is obtained which comprises less than 10% by weight of compounds which have a structural element of the formula I (vinylidene group)

$$C = CH_2$$
 (I),

in which A¹ and A² are aliphatic hydrocarbon radicals.

6. (Amended) An olefin mixture as claimed in claim 5, which comprises a proportion of branched components [-] greater than 85%[, in particular greater than 90% - of

components with branches], and <u>an unbranched olefin</u> [a low proportion - below 15, in particular below 10% - of unbranched olefins] <u>proportion below 15%</u>.

- 7. (Amended) An olefin mixture as claimed in [at least one of claims 5 and 6] claim 5, wherein predominantly groups having (y-4) and (y-5) carbon atoms are bonded to the branching sites of the main chain, where y is the number of carbon atoms in the dimerized monomer.
- 8. (Amended) An olefin mixture as claimed in [at least one of claims 5 to 7] <u>claim 5</u>, wherein the branched components of the dimerization mixture, in the region of 1/4 to 3/4[, preferably from 1/3 to 2/3,] of the chain length of the main chain, have a branch, or two branches on adjacent carbon atoms.
- 9. (Amended) An olefin mixture as claimed in [at least one of claims 5 to 8] claim 5, wherein predominantly groups having one or two carbon atoms are bonded to the branching sites of the main chain.
- 10. (Amended) An olefin mixture as claimed in [at least one of claims 5 to 9] <u>claim</u>
 5, wherein, in the case of the branched components, the ratio of aliphatic to olefinic hydrogen atoms is in the range

$$H_{aliph.}: H_{olefin.} = 47:1 \text{ to } 11:1.$$

11. (Amended) An olefin mixture as claimed in [at least one of claims 5 to 10] <u>claim</u> 5, wherein, in the case of the branched components, the ratio of aliphatic to olefinic hydrogen atoms is in the range

$$H_{aliph.}: H_{olefin.} = 23:1 \text{ to } 14:1.$$
Claims 19-26 (New).